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Prediction of a thermal shock damage map for 
glass plates 
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A thermal shock damage map to qualitatively predict the effect of thermal quench on a glass 
plate is proposed based on thermoelastic and thermoviscoelastic stress theory. The map 
indicates that quenching a glass plate may induce either thermal shock damage and/or 
residual stresses. The theoretical analysis also generally agrees with experimental results 
reported for the thermal quench of polycrystalline alumina specimens with a significant glassy 
phase. 

1. In t roduct ion 
Typical thermal shock of ceramics involves quenching 
of hot specimens into a water bath [1 31, by which 
tremendous heat flow occurs and severe thermal stres- 
ses develop in the quenched component. A thermal 
quench may either weaken [1-6] or strengthen 
ceramics [-7-121. For instance, tempered glass is 
strengthened by thermal quenching from above the 
annealing temperature [7]. For polycrystalline ceram- 
ics, Travitzky et al. [,81, Gebauer and co,workers [9, 
101, and Ohira and Bradt [111 observed that for 
quenching aluminosilicate specimens from about 
1400~ to room temperature, silicone oil increased 
the retained fracture strength. Kirchner [12] observed 
that quenching alumina components from above 
1600 ~ into a silicone oil bath more than doubled the 
average flexural strength of the components, com- 
pared to the as-received strength. Kirchner proposed 
that this dramatic strength increase resulted from 
residual stresses induced by the quench from high 
temperature. 

Transient thermal stresses are the driving force for 
thermal shock damage. Traditional studies of thermal 
shock damage in ceramics calculate transient thermal 
stresses through thermoelastic theory [1-6], which 
assumes that the quenched ceramics are linear-elastic 
materials. The assumption of linear elasticity is reas- 
onable for brittle ceramics quenched from below the 
annealing temperature. However, viscous flow occurs 
when some ceramics are heated to near their an- 
nealing temperature (for example, soda-lime-silica 
glass or a glassy grain boundary phase in a poly- 
crystalline ceramic), and hence when viscous flow 
occurs, the materials behave as viscoelastic materials 
rather than purely elastic materials. Thus for thermal 
quenching from above the annealing temperature, 
thermal stress calculations must include both thermo- 
elastic theory and viscous flow effects. 

This paper analyses the thermal shock of glass 
plates quenched from both above and below the glass 
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annealing temperature. When the initial temperature 
of the glass plate is below the annealing temperature, 
the thermal stresses are calculated using thermoelastic 
theory [,13]. When the initial temperature is above the 
annealing temperature, viscous flow is included and 
the stresses are calculated from thermoviscoelastic 
theory [-14, 15]. Crack growth is assumed to occur if 
the magnitude of the transient tensile stress at the 
surface or the residual stress in the interior exceed the 
fracture strength. 

2. Thermal  stresses 
2.1. Quench from below the annealing 

temperature 
Non-uniform temperature distributions in an elastic 
heated body result in thermoelastic stresses. For this 
study's calculations of thermoelastic stresses in a glass 
plate quenched from below its annealing temperature, 
we assume that the material properties and thermal 
transfer conditions (elastic modulus, thermal expan- 
sion, thermal conductivity, thermal diffusivity, and 
surface heat transfer coefficient) are independent of 
temperature. In addition, the initial glass plate tem- 
perature and quenching medium temperature are as- 
sumed to be constant. 

Heat flow out of the plate occurs as a result of the 
thermal quench. Heat conduction takes place in the 
plate and heat convection occurs in the quenching 
medium. The thickness of the plate is assumed to be 
small compared with its width and length. Thus, edge 
effects are neglected and the heat flow is one-dimen- 
sional. The governing equation for the heat transfer is 

a \ e t  J eZ 2 (1) 

where a is the thermal diffusivity, Z is the coordinate 
in the direction normal to glass plate surfaces, t is the 
time and T(Z, t) is the temperature distribution in the 
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glass plate. The boundary and initial conditions are 

~T 
- 0 Z = 0 

0Z 

~T 
- K - h ( T -  To) Z = l a n d  - 1 (2b) 

~Z 

T = T~ t = 0 (2c) 

where T o is the quenching medium temperature, Ti is 
the initial temperature of glass plate, h is the surface 
heat transfer coefficient, K is the thermal conductivity 
and l is the half-thickness of glass plate; Z = l and 
Z = - l on the plate surfaces. 

Separation of variables gives the temperature gra- 
dient through the thickness of the plate (Z axis) as [16] 

{ s i n S , , c o s ( 8 , Z / l )  
AT.(Z, t) = AT.=~z2, 2,8.,, + sin 8.cos 8 . /  

8.  t a n S ,  = B n = 1 , 2 , 3 , . . .  

T(Z ,  t) = r o + A T . ( Z ,  t) 

where AT is the quenching temperature difference 
between T i and To, 8, is the root of Equation 3b 
and B is Blot's modulus [17], which is in turn given by 

rh 
S - (4) 

K 

where r is a characteristic dimension of the specimen. 
For the plate geometry considered here, r is equal to 
the plate's half-thickness, l [17]. Without considering 
surface traction, the thermoelastic stresses in an in- 
finite plate are [13] 

~x~(z, t) = %,(z, t) 

( if, sE -- AT. + AT. dZ 
1 - v  ~ , 

3zf' AT, ZdZ) (5a) 
+ 2 ~  ~ 

Ozz = oxy = o'x= = %z = 0 (5b) 

where E is the elastic modulus, v is Poisson's ratio, et is 
the thermal expansion, %,  is the normal stress in the 
direction normal to the plate surface, %= and 
%y are the normal stress in the direction parallel to the 
plate surface, and o=y, Ox= and cyyz are the shear stress. 

Combining Equations 3 and 5 gives 

g~(Z ,  t) = %y(Z, t) 

s E A T  ( 
= 2 ~ ~  exp I -  a ( ~ ) 2 t l  

sin 8. 
x 

8, + cos 8, sin 8, 

L 8. cos (6) 

Equation 6 thus describes the thermoelastic stresses in 
an infinite glass plate of thickness 21 quenched from 
below the annealing temperature. 

2.2.  Q u e n c h  f r o m  a b o v e  t he  a n n e a l i n g  
t e m p e r a t u r e  

(2a) When a glass plate is heated to near its annealing 
temperature, the viscosity of the glass decreases. At the 
annealing temperature, viscous flow is significant. For 
example, internal stress in glass is substantially re- 
lieved by viscous flow during a one-hour heat treat- 
ment at the annealing temperature [18]. If a glass 
plate is quenched from above its annealing temper- 
ature, the transient thermal stresses are also influenced 
by viscous flow [14]. 

The mathematics of the thermal stresses in linear 
viscoelastic materials have been treated by several 
authors who account for the effect of viscous flow and 
stress relaxation [14, 19-24]. Lee et al. [14] unified the 
mathematical framework and presented a thermo- 
viscoelastic theory for the thermal stresses and re- 
sidual stresses that arise when a glass plate is quen- 
ched symmetrically from both surfaces. Upon com- 

(3a) parison with experimental results, Narayanaswamy 
and Gardon [15] modified the numerical calculation 

(3b) technique of Lee et al. to bring the theoretical results 
into closer agreement with experimental data. Since 

(3c) the theory of Lee et al. can conveniently model the 
transient thermal stresses in a rapidly quenched glass 
plate, we use the formulations presented by Lee et al. 
[14] and Narayanaswamy and Gardon [15] in the 
present study. 

Linear-elastic materials have a constant elastic 
modulus so that materials subjected to a given strain 
do not experience stress relaxation. However, linear 
viscoelastic materials exhibit stress relaxation for an 
isothermal deformation, which is described by [19, 25] 

fo '" ~8kl(t') --' (Yij(t) -~ Gijkl(t -- t ) ~ -  fit (7) 

where c~ u, 8kt , Gijkt(t ) and t are the stress tensor, strain 
tensor, relaxation modulus tensor and time, respect- 
ively. For viscoelastic plates subjected to a thermal 
quench, Lee et al. [14] proposed that the transient 
thermal stresses may be calculated from 

fi%x( Z,  t )dZ = 0 (8) 

% x ( Z ,  t) = 3 Jo R [ ~ ( Z ,  t) - ~(Z, t ' ) ]  

x ~ [c( t ' )  - sT (Z ,  t ' ) ]  dt '  (9) 

where the reduced time, ~, expresses the temperature 
and time dependence of the viscoelastic material prop- 
erties. The parameter ~ is defined by [14, 20, 233 

L ~(Z,  t) = • [ T ( Z ,  t ' ) ]d t '  (10) 

T(Z ,  t) is the temperature distribution in the quenched 
glass plate (Equation 3). Lee et al. [141 indicated that 
the time-shift factor ~(T) for soda-lime-silica glass 
measured at a base temperature O f 538 ~ is 

loglo[O(T)] = 0 .03861(T-  538) (11) 

R(~) is an auxiliary modulus function associated with 
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the relaxation modulus tensor, G, such that for a 
Maxwell solid R(~) is given by [20, 21] 

H(~)~o / ~'~ 
R(~) = 3(i ~ e x p [ - - -  (12a) ) v) k Zo 

o r  

where 

[3~) (12b) /~(~) = H(~)exp - ~o 

l + v  
13 - (12c) 

3(1 - v) 

and H(~) is the Heaviside unit step-function. Eo and ~o 
are the instantaneous elastic modulus at t = 0 and the 
relaxation time, respectively. Batteh [26] approxi- 
mated /~ directly from the data of Narayanaswamy 
and Gardon [15] for soda-lime-silica glass as 

/~(~) = e x p ( -  ~/700) (13) 

According to Narayanaswamy and Gardon's modifi- 
cation [15], Equation 9 is rewritten as 

induce viscous flow in the glass plate which in turn 
leads to complex stress fields and induces residual 
stresses in the plate (Fig. lb and Fig. 2). The thermo- 
elastic surface stresses versus time increase as AT 
increases (Fig. 3a). The time evolution of the surface 
stresses that develop during quenching are keenly 
dependent on whether the plate is quenched from 
below or from above the annealing temperature. For 
quenching from below the annealing temperature, the 
thermoelastic stresses versus time increase monotoni- 
cally as AT increases (Fig. 3a). In contrast, for quen- 
ching from above the annealing temperature, the ther- 
moviscoelastic stresses generally decrease as the 
temperature increases (Fig. 3b). 

Fig. 4 illustrates the relationship between AT 
and the maximum surface tensile stresses. For 
zXT < 500 ~ the glass plate acts as an elastic material 
and the stresses follow the solid line. According to 
Equation 6, the maximum surface tensile stresses in- 
crease linearly with increasing AT. For AT > 580 ~ 

,s~(z, t) = c%(Z, t) 

_ Eo ~ (e.(tl)-~(ti-1)-cz[T(Z, ti)- T(Z, ti-1)]f' 
1 - v , = 1   Tz; ,i - 

/~(~ -- ~')d~') (14) 

Equations 8 and 14 constitute a set of non-linear 
integral equations. To calculate the transient thermal 150 
stresses, we first numerically solve for ~(Z, t) by com- 
bining Equations3, 10, and 11. The integral of ~" 

o.. 

R d~' in Equation 14 is then calculated using Equa- 
tion 13. Finally, the transient stress or(Z, t) and strain ~ zs 
~(t) are calculated iteratively as a function of time t, 
using Equations 8 and 14. The residual stresses are the 
steady-state values to which cy(Z, t) converges if time 
becomes great enough, for example t = 50 s. The re- ~ 0 
sidual surface stresses correspond to the convergent 

0J 

values, ~(l, t). Table I lists the required input values for ~_= 
the numerical analysis. 

-75 

TAB L E I Numerical values used in calculating the transient ther- 
mal stresses in microscope slide glass specimens (all values meas- 
ured by the present authors [27] unless otherwise indicated) 

3. N u m e r i c a l  r e s u l t s  a n d  d i s c u s s i o n  
For a glass plate quenched from below its annealing 
temperature, numerical modelling of the thermoelastic ~" 
stresses shows that compressive stress arises internally ~ 225 
in the plate and that tensile stresses develop on the 
plate's surface (Fig. la). The maximum tensile stress 

"~ 150 
always appears on the surface of the glass plate, o 

If a glass plate is quenched from above the an- 
75 nealing temperature, thermoviscoelastic stresses can 

O 

o 

Thermal expansion, ct 8 x 10-6~ -1 [5, 6] 
Elastic modulus, E 70 GPa 
Poisson's ratio, v 0.25 [5, 6] 
Half-thickness of specimen, l 0.001 m 
Thermal diffusivity, a 4.8 x 10- v m2s-1 [5, 6] 
Biot's modulus, B 10 
Quenching medium temperature, T O 20 ~ 
Flexural fracture strength 101.4 MPa 

i 

-1 0 

(0) Position on 2 d x i s  (mm) 

-75 
-1 
(b) 

I 

0 
Position on Zax i s  (mm) 

Figure 1 Transient thermal stresses in a quenched glass plate. 
(a) Thermal quenching from below the annealing temperature, 
A T =  300~ time =(A) 0.005, (B) 0.38, (C) 1.3, (D) 2.92s. 
(b)Thermal quenching from above the annealing temperature, 
AT = 620 ~ time = (A) 0.08, (B) 0.27, (C) 0.64, (D) 1.25, (E) 2.16, (F) 
3.43 s. Blot's modulus = 10. 
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Figure 2 Residual stress profile in a glass plate quenched from 
above the annealing temperature. (A) AT = 620 ~ Biot's modulus 
= 8; (B) AT = 660 ~ Biot's modulus = 8; (C) AT = 700 ~ Biot's 

modulus = 5; (D) AT = 700 ~ Biot's modulus = 15. 

Quenching temperature difference (~ 

Figure 4 The maximum surface stresses in a quenched plate, as a 
function of the quench temperature difference AT: ( ) thermo- 
elastic stresses, ( - - - )  thermoviscoelastic stresses. 
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Figure3 Influence of AT on surface stresses; (a)thermoelastic 
stresses, (b) thermoviscoelastic stresses. Biot's modulus = 10. 
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Figure5 Influence of Biot's modulus B on surface stresses: 
(a) thermoelastic stresses, with A T = 300 ~ (b)thermoviScoelastic 
stresses, with AT = 620 ~ 

viscous flow of the glass becomes significant, resulting 
in a decrease of the maximum surface tensile stresses 
as a function of increasing AT (the dashed line in 
Fig. 4). Between A T - - 5 0 0 ~  and AT = 580~ the 
two curves superimpose. 

The thermal stresses illustrated in Figs 1, 3 and 4 
are computed for a Biot's modulus equal to 10. How- 
ever, Biot's modulus influences the magnitude of ther- 
mal stresses such that as Biot's modulus increases, the 
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maximum value of the residual tensile stress increases 
in the plate's interior and the transient tensile stress on 
the plate's surface also increases (Fig. 2 and Fig. 5a 
and b). Thermal quench conditions for a given mater- 
ial system can be described in terms of the surface heat 
transfer coefficient, quench temperature difference, 
and the specimen dimensions. However, Biot's modu- 
lus can replace both the surface heat transfer coeffi- 
cient and specimen size variables such that thermal 



quench conditions can be simply expressed by two 
variables, Biot's modulus and the quench temperature 
difference. 

Thermal shock damage usually initiates at the re- 
gions of maximum transient tensile stress [1-6] which 
occurs on the surface of quenched brittle components. 
Crack growth also may occur in the interior of tem- 
pered glass which develops sufficiently high residual 
stresses. To predict the thermal shock damage of glass 
plates quenched from above their annealing temper- 
ature, we assume that (i) during thermal quench, crack 
growth is dominated by the propagation of pre-exist- 
ing surface cracks; (ii)the surface layers in the initial 
cooling step approach elastic behaviour; (iii) the frac- 
ture strength is independent of temperature; and 
(iv) after the thermal quench occurs, the residual ten- 
sile stress in the interior of the quenched glass plate 
may be large enough to propagate pre-existing flaws. 
Therefore, an appropriate shock damage criterion is 
that the crack growth occurs if tile magnitude of the 
transient surface stress or the residual interior tensile 
stress exceeds the fracture strength. 

From the thermal stress calculations, we can con- 
struct a thermal shock damage map (Fig. 6) consisting 
of three lines, curve A for the thermoelastic stresses 
and curves B and C for the thermoviscoelastic stresses. 
The thermal quench conditions in the map are charac- 
terized by Biot's modulus and the quench temperature 
difference. When the thermal quench conditions cor- 
respond to a point above curves A and B, the max- 
imum surface tensile stresses exceed the fracture 
strength and cracks propagate. If the quench condi- 
tions correspond to a point above curve C, crack 
growth is driven by the residual interior tensile stress. 
When the quench conditions correspond to a point 
below the curves, there is no shock damage. The effect 
of viscous flow upon the stresses becomes obvious 
near the annealing temperature, which is about 580 ~ 
in this case (see Figs 4 and 6). Thus, residual thermal 
stresses develop in glass plates quenched from above 
about 600 ~ 

For a thermal quench of a glass plate, three values 
of the critical quench temperature difference, ATe, may 
appear on the thermal shock damage map. The critical 
values of AT c may be calculated from the intersections 
of the three curves in the thermal shock damage map 
(Fig. 6). For example, if the glass plate is quenched at 
B = 5, the critical quench temperature differences are 
ATe = 300, 670 and 780~ From the three critical 
values, we can qualitatively infer the shape of the 
thermal quench strength degradation curve (Fig. 7). 
Glass plates quenched from below AT = 300 ~ have 
no thermal shock damage and their fracture strength 
does not change. Above AT = 780 ~ as well as be- 
tween A T =  300~ and AT= 670~ thermal shock 
damage reduces the retained fracture strength of the 
glass plate. Shock damage disappears for 
670 ~ < AT < 780 ~ The gradual increase and ev- 
entual saturation in retained fracture strength for 
580 ~ < AT < 780 ~ results from viscous flow of the 
glass. The viscous flow decreases the magnitude of 
thermal stresses, which in turn decreases the prob- 
ability and the severity of the thermal shock damage. 
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Figure 6 Thermal shock damage map of glass plate. 

t -  

r r  

/ \damage 

JaOmS;gOCk~ z~ Tc ~ '~ / /dN: : : ; :  k ~x',~ 

___?r Therma, shoek / 
Residual stresses 

Quenching temperature difference (~ 

Figure 7 Thermal shock-induced strength degradation curve as 
derived from the thermal shock damage map for a quenched glass 
plate. " 

Thus, between 580 and 780 ~ the glass plate can be 
tempered (strengthened) without thermal shock dam- 
age. 

Fig. 8 illustrates the relation among residual surface 
stresses, initial quenching temperature, and Biot's 
modulus. For thermal quench conditions correspond- 
ing to a given Biot's modulus, the residual surface 
stresses reach a saturation value with further increase 
of the initial glass temperature. Therefore, the re- 
sidual-stress-induced increase in the retained fracture 
strength also saturates (Fig. 8). 

In this study, thermal shock damage was analysed 
for glass plates. Physically meaningful changes in the 
input parameters (Table I) for the numerical analysis 
only shift the curves, without changing the essential 
characteristics of the thermal shock damage map. For 
example, in a plot of Biot's modulus versus the quen- 
ching temperature difference, changing the fracture 
stress from the experimentally determined value of 
101.4 MPa [27] downward to 60 MPa or upward to 
160 MPa systematically shifts the numerical results 
with respect to the quenching temperature difference, 
but the general shape of the curve is largely main- 
tained (Fig. 9). Variations in specimen thickness, sur- 
face heat transfer coefficient and thermal conductivity 
are encompassed by B, the Biot's modulus (Equa- 
tion 4). Fig. 9 is quite important with respect to the 
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Figure 8 Relationship between residual surface stresses, initial glass 
temperature, and Blot's modulus  B for a quenched glass plate. 
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Figure 9 Shifts in the thermal shock damage map  t'hat result from 
assuming different flexural fracture strength values for the glass 
plate. 

numerical modelling presented in this paper and the 
possibility of extending our analysis to other mater- 
ials. Numerical techniques can be unstable, in that 
small changes in the input data may cause large 
swings in the results [28], but (at least with regard to 
changes in the fracture stress) the technique presented 
here seems to be stable. 

Therefore, the map may apply also to those ceramic 
materials which are viscoelastic at high temperature. 
Gebauer and co-workers [9, 10] and Ohira and 
Bradt [11] quenched aluminosilicate rods into a sili- 
cone oil bath over a range of different quench temper- 
ature differences and obtained a strength degradation 
curve similar to Fig. 7. Gebauer and co-workers [9, 
10] proposed that viscous flow in the glassy grain 
boundary phases might account for the observed 
strength changes. The analysis in the present study 
shows that the viscous flow of glass yields the same 
"shape" of a strength distribution curve as observed 
experimentally by them. 

4. Concluding remarks 
Thermal shock-damage studies of ceramics typically 
focus on thermal quenching from below the annealing 

temperature. In this paper, the shock damage of glass 
plates quenched from both above and below their 
annealing temperature was analysed. The heat trans- 
fer characteristics of the quench bath, the initial mater- 
ial temperature, and material properties determine 
whether quenching a glass plate produces thermal 
shock damage and/or produces residual stress. The 
analysis also indicates that thermal quench from be- 
low the glass annealing temperature leads to an in- 
crease in shock damage probability with increase of 
quench temperature difference, AT. Viscous flow oc- 
curs when a glass is quenched from above the an- 
nealing temperature. While viscous flow reduces the 
transient surface tensile stress, the viscous flow pro- 
motes the eventual development of residual tensile 
stresses in the plate's interior. Thus, damage-free tem- 
pered glass will be restricted to a certain range of AT. 

The theoretical analysis presented here for tem- 
pered glass plates may apply also to those ceramic 
materials which are viscoelastic at high temperature. 
Although there are similarities between the behaviour 
predicted in this study and the experimental results in 
the literature for polycrystalline ceramics quenched 
from high temperatures, additional study is needed on 
the quench behaviour of ceramics containing a signi- 
ficant glassy grain boundary phase. 
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